Raman Spectroelectrochemical Instrument

Ref. SPELECRAMAN

The equipment can also be used independently as a Raman Spectrometer or as a Bipotentiostat/Galvanostat.

General specifications	
Power	5 V DC
PC interface	USB
LED indicators	Power
Dimensions	25 x 24 x 11 cm (L x W x H)
Weight	3490g
Potentiostat/Galvanostat	
Operating modes	BiPotentiostat, Potentiostat, Galvanostat
DC-Potential range	±4 V
Current ranges (potentiostat)	± 1 nA to ± 10 mA (8 ranges)
Maximum measurable current	±40 mA
Potential ranges (galvanostat)	±100 mV, ±1 V (2 ranges)
Applied Potential Resolution	1 mV
Measured Current Resolution	0.025 % of current range
	(1 pA on lowest current range)
Applied Current Resolution	0.1 % of current output range
Measured Potential Resolution	0.012 % of potential range
Potential Accuracy	±0.2 %
Current Accuracy	≤0.5 % of current range at 100 nA to 10 mA
Lightsource - Laser Class 3B	
Wavelength	785 ± 1 nm
Spectral line width	< 0.2 nm FWHM
Stability	± 0.1 nm (-20 to 55°C)
Optical power output	500 mW (375 mW typical)
Output power stability	± 1%
Warm-up time	10 s from cold start; 1.5 s from warm start
Fiber optic connector	FC
Spectrometer	
Detector	2D CCD Array, Back thinned TE Cooled
Pixels	1044 x 64
Wavelength range	785 – 1010 nm
Raman shift	0 – 2850 cm ⁻¹
Resolution	< 4 cm ⁻¹ (0.3 nm)
Signal-to-noise ratio	1000 : 1 (at full signal)
Dynamic range	85000 : 1
Integration time	8 ms to 60 min
A/D resolution	18 bit
Fiber optic connector	SMA 905
Charificat	tions are subject to change without provinus patica

Specifications are subject to change without previous notice

SERS effect to enhance Raman signals and detect low analyte concentrations in solution can be achieved with silver and gold screen printed electrodes among others already available in our catalogue (ref. 010 and 220AT).

SPELEC RAMAN can be used with standard RAMAN cuvettes, but also with the new innovative DropSens cells for RAMAN SPECTROELECTROCHEMISTRY experiments using screen-printed electrodes.

www.metrohm-dropsens.com

Raman Spectroelectrochemical Instrument

01

Ref. SPELECRAMAN

Combination of Raman and Bipotentiostat/Galvanostat in a fully integrated synchronized Raman Spectroelectrochemical instrument.

SPELEC RAMAN is the world's only equipment in the market for performing RAMAN SPECTROELECTROCHEMISTRY studies combining in only one box a LASER Class 3B (785 nm), a Bipotentiostat/Galvanostat (± 4 V potential range, ± 40 mA current range) and a Spectrometer (wavelength range 785 – 1010 nm and Raman shift 0 – 2850 cm⁻¹).

All the components are perfectly fitted and synchronized, offering for the first time a fully integrated synchronized Raman spectroelectrochemical instrument.

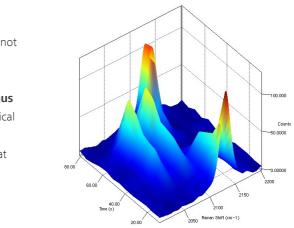
 $\sqrt{\text{RAMAN SPECTRA}}$ advantages: compatible with aqueous samples, rapid identification, non-destructive.

measurements:

> Surface characterization: new materials development, corrosion analysis, battery testing,... > EC-SERS for enhanced Raman Spectra increasing detection sensitivity.

 $\sqrt{}$ Ideal for **qualitative & quantitative analysis**: high sensitivity and reproducibility.

 $\sqrt{$ In-situ, real time and synchronized Raman and Electrochemical measurements.


SPELEC RAMAN is controlled by the DROPVIEW SPELEC Software, which provides powerful functions such as:

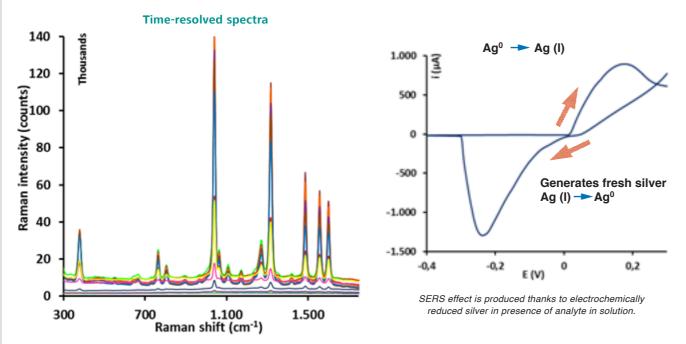
- Time resolved RAMAN
- Power laser control.
- Real Time panel that collects the generated spectra not only during the electrochemical measurement but continuously at any time.
- Spectroscopic measurements in Counts, Counts minus Dark, Raman, Raman Shift during the Electrochemical process.
- Plot of Optical Signals vs. Potential/time Curves at specified wavelength and Raman Shift.
- · Plot overlay, peak integration, smoothing, subtraction, derivative curve, baseline fitting.
- 3D plotting of curves, spectrum film.

04

- Compact & Light Instrument
- Cost-effective
- Extremely easy set-up
- Advanced data acquisition
- Easy data handling integrated in software

$\sqrt{}$ Real time Raman spectroelectrochemistry with SYNCHRONIZED RAMAN and ELECTROCHEMICAL

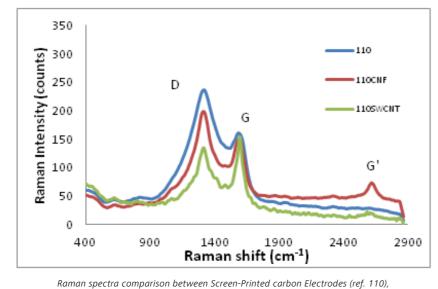
Raman Spectroelectrochemical Instrument


02

Ref. SPELECRAMAN

In-situ Surface Enhanced Raman Scattering (SERS)

This sensitive technique enhances Raman scattering when molecules are adsorbed on rough metal surfaces. Really powerful for highly sensitive detection of low concentration analytes.

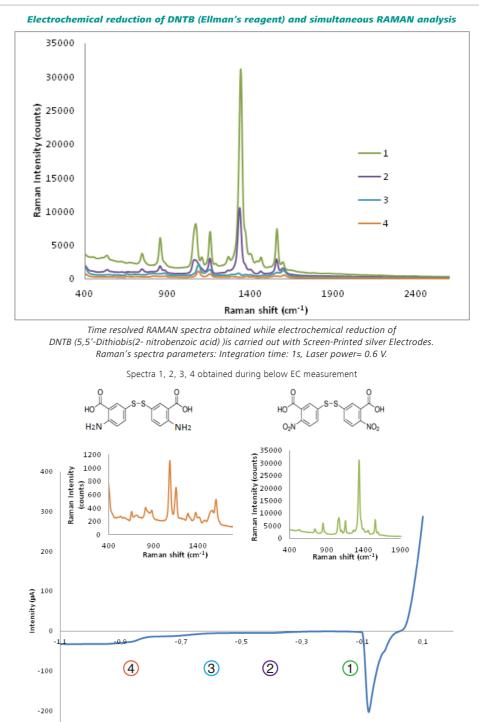

1µM Tris(bipyridine)ruthenium (II) chloride in 0.1M KCl over screen-printed silver electrode (ref. C013).

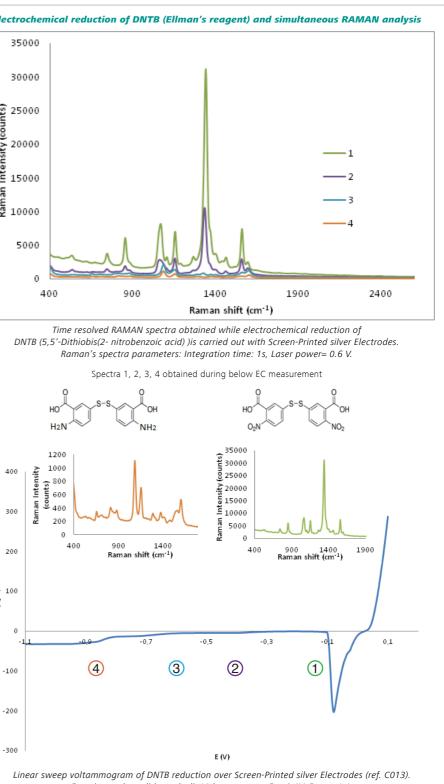
Experimental conditions: Cyclic Voltammogram E0= 0.3V, Evtx1= -0.4V, Evtx2= 0.3V, Step potential= 2 mV,Scan rate= 50 mV/s; Raman's experiment parameters: Integration time 2 s, Laser power= 0.7 V.

Materials characterization by RAMAN

Raman spectroscopy allows knowing in effortless way information about the structure of materials. For example, the G and D bands of the Raman spectra from carbon materials provide information about the fraction of sp^3 and sp^2 bonds that provide knowledge on the layered structure of these materials.

Single-walled carbon nanotubes modified Screen-Printed carbon Electrode (ref. 110SWCNT) and Carbon Nanofibers modified Screen-Printed carbon Electrode (ref. 110CNF), Relationship between D and G bands' intensity provide us information about these materials structure.


Raman Spectroelectrochemical Instrument


03

Ref. SPELECRAMAN

Spectroelectrochemical RAMAN analysis

Combination of electrochemical methods with RAMAN analysis provides information about the reaction and products generated electrochemically in-situ, time resolved and synchronized. SPELEC RAMAN is a perfect tool for quantitative and qualitative analysis. Detect the behaviour of molecules in different oxidation states taking advantage of the SERS effect making spectroelectrochemistry a powerful technique for a wide range of different applications.

Experimental conditions: Cyclic Voltammogram $E_0 = 0.1V$, $E_{end} = -1.1$, Step potential= 5 mV, Scan rate= 25 mV/s;