Nasze produkty
Mikroskopia elektrochemiczna
Skaningowa mikroskopia elektrochemiczna polega na wizualizacji lokalnej aktywności elektrochemicznej na powierzchni próbki. W tym celu mikroelektroda jest przesuwana w niewielkiej odległości nad powierznią próbki (badany obszar odpowiada od 3 do 5 średnicom mikroelektrody).
W badanym obszarze mikroelektroda oddziaływuje z powierzchnią w sposób uzależniony od własności powierzchniowych. Szczególnie użyteczne są mikroelektrody o promieniu poniżej 100 µm, ze względu na półsferyczny charakter dyfuzji oraz szybkie osiąganie stanu stacjonarnego. Prąd płynący przez mikroelektrodę w trakcie skanowania powierzchni jest modulowany przez zmieniające się elektrochemiczne własności próbki.
DO POBRANIA:
BROSZURA INFOMACYJNA
PEŁNA LISTA MOŻLIWYCH ELEMENTÓW UKŁADU
Sensolytics Base SECM
03-00001
Zestaw startowy do wszystkich typów eksperymentów SECM , kompletny zestaw skaningowego mikroskopu elektrochemicznego zawierający:
- wysokiej jakości silnik krokowy kontrolujący system pozycjonowania xyz, obszar 25x25x25 mm z rozdzielczością 20 nm (calc.)
- zestaw startowy zawierający dwie mikroelektrody Pt (25 i10 µm), elektrode referencyjną, elektrodę odniesienia i prostą próbke testową
- pełny zestaw konTrolny z komputerem, ekranem TFT, myszką i klawiaturą
Ten zestaw jest przygotwany do badania płaskich powierzchni elektrodami z zakresu 10 do 100 µm. Może byc roszerzony w dowolnym czasie o opcje wysokiej rozdzielczości High-Res lub opcje Shearforce do niezależnej prądowo kontroli odległości.
Opcja High-Res
03-00002
Opcjonalne zwiekszenie jakości obrazowania Sensolytics Base SECM, przez wprowadzenie piezoelectrycznego systemu pozycjnowania. Nominalna rozdzielczość 1 nm z powtarzalnościa , 10 nm dla obszaru 100x100x100 μm.
Opcja Shearforce
03-00003
Opcja precyzyjnie rozdziela informacje topograficzną i elektrochemiczną, pozwlając na kontrolę odległości pomiędzy końcówką skanującą i próbką. Możliwe jest zapewnienie stałego dystansu z zakresu 50 -3 00 nm powyżej powierzchni próbki poprzez zaawansowany mechanizm sprzężenia zwrotnego. Nadaje się do struktu < 1 µm,zalezne od opcji High-Res
Opcja Video
03-00006
System video moze byc dodany jako pomoc do ustawien SECM , powiększenia manualne od 1.75 do 5.
SECM mikroelektrody
Sensolytics oferuje szereg rodzajów mikroelektrod do zestawu mikroskopowego SECM.
Mikroelektrody platynowe
Dyskowe mikroelektrody Pt moga być używane z dowolnym zestawem Sensolytics SECM.
Mikroelektrody złote
Dyskowe mikroelektrody Au moga być używane z dowolnym zestawem Sensolytics SECM.
Ultramimroelektrody platynowe
Dyskowe ultramikroelektrody Pt moga być używane z dowolnym zestawem Sensolytics SECM.
Mikroelektrody węglowe
Dyskowe mikroelektrody węglowe moga być używane z dowolnym zestawem Sensolytics SECM.
Platynowa elektroda pomocnicza
Zminiaturyzowana elektroda pomocnicza pasuje do wszystkich typów cel pomairowych Sensolytics SECM.
Elektroda referencyjna Ag/AgCl
Zminiaturyzowana elektroda referencyjna.
Literatura SECM
Fundamentals
- Abodi, L. C.; Gonzalez-Garcia, Y.; Dolgikh, O.; Dan, C.; Deconinck, D.; Mol, J.M.C.; Terryn, H.; Deconinck, J.: Simulated and measured response of oxygen SECM-measurements in presence of a corrosion process. In: Electrochimica Acta 146 (2014), Issue 0, pp. 556–563
- Cornut, R.; Bhasin, A.; Lhenry, S.; Etienne, M.; Lefrou, C.: Accurate and Simplified Consideration of the Probe Geometrical Defaults in Scanning Electrochemical Microscopy: Theoretical and Experimental Investigations. In: Anal. Chem. 83 (2011), Issue 24, pp. 9669–9675
- Etienne, M.; Anderson, E. C.; Evans, S. R.; Schuhmann, W.; Fritsch, I.: Feedback-Independent Pt Nanoelectrodes for Shear Force-Based Constant-Distance Mode Scanning Electrochemical Microscopy. In: Anal. Chem. 78 (2006), Issue 20, pp. 7317–7324
- Etienne, M.; Lhenry, S.; Cornut, R.; Lefrou, C.: Optimization of the shearforce signal for scanning electrochemical microscopy and application for kinetic analysis. In: Electrochim. Acta 88 (2013), Issue 0, pp. 877–884
- Etienne, M.; Moulin, J.-P.; Gourhand, S.: Accurate control of the electrode shape for high resolution shearforce regulated SECM. In: Electrochim. Acta 110 (2013), pp. 16–21
- Etienne, M.; Schulte, A.; Schuhmann, W.: High resolution constant-distance mode alternating current scanning electrochemical microscopy (AC-SECM). In: Electrochem. Commun. 6 (2004), Issue 3, pp. 288–293
- Gorzkowski, M. T.; Jurczakowski, R.; Orlik, M.: Electrochemical oscillations and bistability in the redox processes of mercury ions, coupled with the self-induced convection of Hg surface. In: J. Electroanal. Chem. 615 (2008), Issue 2, pp. 135–144
Life Science
- Castro, P. S.; Lima, A. S.; Ferreira, T. L.; Bertotti, M.: Scanning Electrochemical Microscopy as a Tool for the Characterization of Dental Erosion. In: Int. J. Electrochem. 2011 (2011), Issue 5, pp. 1–6
- Conzuelo, Felipe; Stratmann, Lutz; Grützke, Stefanie; Pingarrón, José M.; Schuhmann, Wolfgang: Detection and Quantification of Sulfonamide Antibiotic Residues in Milk Using Scanning Electrochemical Microscopy. In: Electroanalysis 26 (2014), Issue 3, pp. 481–487
- Pereda, M. D.; Alonso, C.; Gamero, M.; del Valle, J. A.; Fernández Lorenzo de Mele, M.: Comparative study of fluoride conversion coatings formed on biodegradable powder metallurgy Mg: The effect of chlorides at physiological level. In: Mat. Sci. Eng. C 31 (2011), Issue 5, pp. 858–865
- Prasanth, R.; Gopinath, D.: Effect of ZnO nanoparticles on nasopharyngeal cancer cells viability and respiration. In: Appl. Phys. Lett. 102 (2013), Issue 11, p 113702–113702
- Rozhanchuk, T.; Tananaiko, O.; Mazurenko, I.; Etienne, M.; Walcarius, A.; Zaitsev, V.: Electroanalytical properties of haemoglobin in silica-nanocomposite films electrogenerated on pyrolitic graphite electrode. In: J. Electroanal. Chem. 625 (2009), Issue 1, pp. 33–39
- Biosensors
- Guadagnini, L.; Maljusch, A.; Chen, X.; Neugebauer, S.; Tonelli, D.; Schuhmann, W.: Visualization of electrocatalytic activity of microstructured metal hexacyanoferrates by means of redox competition mode of scanning electrochemical microscopy (RC-SECM). In:Electrochim. Acta 54 (2009), Issue 14, pp. 3753–3758
- Hussien, E. M.; Erichsen, T.; Schuhmann, W.; Maciejewska, M.: SECM visualization of the spatial variability of enzyme-polymer spots. 3. Enzymatic feedback mode. In: Anal. Bioanal. Chem. 391 (2008), Issue 5, pp. 1773–1782
- Lei, R.; Stratmann, L.; Schäfer, D.; Erichsen, T.; Neugebauer, S.; Li, N.; Schuhmann, W.: Imaging Biocatalytic Activity of Enzyme−Polymer Spots by Means of Combined Scanning Electrochemical Microscopy/Electrogenerated Chemiluminescence. In: Anal. Chem. 81 (2009), Issue 12, pp. 5070–5074
- Lima, A. S.; Meloni, G. N.; Bertotti, M.: Determination of Paracetamol in Presence of Ascorbic Acid in Pharmaceutical Products by Scanning Electrochemical Microscopy. Electroanalysis (2013), pp. n/a
- Matos, I. O.; Ferreira, Tiago L.; Paixão, T. R.L.C; Lima, Alex S.; Bertotti, Mauro; Alves, W. A.: Approaches for multicopper oxidases in the design of electrochemical sensors for analytical applications. In: Electrochim. Acta 55 (2010), Issue 18, pp. 5223–5229
- Morkvenaite-Vilkonciene, I.; Genys, P.; Ramanaviciene, A.; Ramanavicius, A.: Scanning Electrochemical Impedance Microscopy for Investigation of Glucose Oxidase Catalyzed Reaction. In: Colloids and Surfaces B: Biointerfaces , Issue 0,
- Vilkonciene-Morkvenaite, Inga; Ramanaviciene, Almira; Ramanavicius, Arunas: Redox Competition and Generation-Collection Modes Based Scanning Electrochemical Microscopy for the Evaluation of Immobilized Glucose Oxidase Catalysed Reaction. In: RSC Adv 4 (2014), Issue 91, pp. 50064–50069
- Assays
- Intarakamhang, S.; Leson, C.; Schuhmann, W.; Schulte, A.: A novel automated electrochemical ascorbic acid assay in the 24-well microtiter plate format. In: Anal. Chim. Acta 687 (2011), Issue 1, pp. 1–6
- Intarakamhang, S.; Schulte, A.: Automated Electrochemical Free Radical Scavenger Screening in Dietary Samples. In: Anal. Chem. 84 (2012), Issue 15, pp. 6767–6774
- Neugebauer, S.; Zimdars, A.; Liepold, P.; Gębala, M.; Schuhmann, W.; Hartwich, G.: Optimization of an Electrochemical DNA Assay by Using a 48-Electrode Array and Redox Amplification Studies by Means of Scanning Electrochemical Microscopy. In: ChemBioChem 10 (2009), Issue 7, pp. 1193–1199
- Stratmann, L.; Gebala, M.; Schuhmann, W.: A Chemical Lift-off Process: Removing Non-Specific Adsorption in an Electrochemical Epstein–Barr Virus Immunoassay. In:ChemPhysChem 14 (2013), Issue 10, pp. 2198–2207
Material Science
- Aparna, R.; Sivakumar, N.; Balakrishnan, A.; Sreekumar Nair, A.; Nair, Shantikumar V.; Subramanian, K. R. V.: An effective route to produce few-layer graphene using combinatorial ball milling and strong aqueous exfoliants. In: J. Renewable Sustainable Energy 5 (2013), Issue 3, p 033123–33123
- Fernández, J.; del Río, A. I.; Molina, J.; Bonastre, J.; Cases, F.: Modified carbon fabric electrodes: preparation and electrochemical behavior toward amaranth electrolysis. In: J Appl Electrochem (2014), pp. 1-10
- Fernández, J.; Molina, J.; Río, A. I. del; Bonastre, J.; Cases, F.: Synthesis and Characterization of Electrochemically Platinum-Polyaniline Modified Carbon Textile Electrodes. Int. J. Electrochem. Sci. 7 (2012), Issue 10, pp. 10175–10189
- Gamboa, J. C. M.; Peña, R. C.; Paixão, T. R. L. C.; Lima, A. S.; Bertotti, M.: Activated Copper Cathodes as Sensors for Nitrite Analysis. In: Electroanalysis 22 (2010), Issue 22, pp. 2627–2632
- Gębala, M.; Schuhmann, W.; La Mantia, F.: A new AC-SECM mode: On the way to high-resolution local impedance measurements in SECM. In: Electrochem. Commun. 13 (2011), Issue 7, pp. 689–693
- Hempelmann, R.; Chen, R.; Trieu, V.; Zeradjanin, A. R.; Natter, H.; Teschner, D.; Kintrup, J.; Bulan, A.; Schuhmann, W. W.; Zeradjanin, A. R.; Schuhmann, W.: Microstructural impact of anodic coatings on the electrochemical chlorine evolution reaction. In: Phys. Chem. Chem. Phys 14 (2012), Issue 20, p 7392–7392
- Lima, A. S.; Salles, M. O.; Ferreira, T. L.; Paixão, T. R. L. C.; Bertotti, M.: Scanning electrochemical microscopy investigation of nitrate reduction at activated copper cathodes in acidic medium. In: Electrochim. Acta 78 (2012), Issue 0, pp. 446–451
- Molina, J.; Fernández, J.; del Río, A. I.; Bonastre, J.; Cases, F.: Characterization of azo dyes on Pt and Pt/polyaniline/dispersed Pt electrodes. In: Appl. Surf. Sci. 258 (2012), Issue 17, pp. 6246–6256
- Molina, J.; Fernández, J.; del Río, A. I.; Bonastre, J.; Cases, F.: Chemical and electrochemical study of fabrics coated with reduced graphene oxide. In: Appl. Surf. Sci. 279 (2013), pp. 46–54
- Nebel, M.; Neugebauer, S.; Kiesele, H.; Schuhmann, W.: Local reactivity of diamond-like carbon modified PTFE membranes used in SO2 sensors. In: Electrochim. Acta 55 (2010), Issue 27, pp. 7923–7928
- Corrosion Science
- Billi, F.; Onofre, E.; Ebramzadeh, E.; Palacios, T.; Escudero, M. L.; Garcia-Alonso, M. C.: Characterization of modified Ti6Al4V alloy after fretting–corrosion tests using near-field microscopy. In: Surf. Coat. Tech. 212 (2012), Issue 0, pp. 134–144
- Bolat, G.; Mareci, D.; Chelariu, R.; Izquierdo, J.; González, S.; Souto, R. M.: Investigation of the electrochemical behaviour of TiMo alloys in simulated physiological solutions. In:Electrochim. Acta 113 (2013), pp. 470–480
- Castro, P. S.; Dantas, L. M. F.; Nishida, A. C.; Francci, C. E.; Bertotti, M.: Probing the Enamel Topography After Acid Erosion by Scanning Electrochemical Microscopy. Int. J. Electrochem. Sci. 7 (2012), Issue 12, pp. 12720–12729
- Chelariu, R.; Bolat, G.; Izquierdo, J.; Mareci, D.; Gordin, D. M.; Gloriant, T.; Souto, R. M.: Metastable beta Ti-Nb-Mo alloys with improved corrosion resistance in saline solution. In:Electrochimica Acta , Issue 0,
- Chen, R.; Trieu, V.; Zeradjanin, A. R.; Natter, H.; Teschner, D.; Kintrup, J.; Bulan, A.; Schuhmann, W.; Hempelmann, R.: Microstructural impact of anodic coatings on the electrochemical chlorine evolution reaction. In: Phys. Chem. Chem. Phys 14 (2012), Issue 20, p 7392–7392
- Duarte, R. G.; González, S.; Castela, A. S.; Ferreira, M. G. S.; Souto, R. M.: Sensing polymer inhomogeneity in coated metals during the early stages of coating degradation. In:Prog. Org. Coat. 74 (2012), Issue 2, pp. 365–370
- Etienne, M.; Layoussifi, B.; Giornelli, T.; Jacquet, D.: SECM-based automate equipped with a shearforce detection for the characterization of large and complex samples. In:Electrochem. Commun. 15 (2012), Issue 1, pp. 70–73
- Etienne, Mathieu; Dossot, Manuel; Grausem, Jérôme; Herzog, Gregoire: Combined Raman microspectrometer and shearforce regulated SECM for corrosion and self-healing analysis. In: Anal. Chem. (2014),
- Fernández-Pérez, B. M.; Izquierdo, J.; González, S.; Souto, R. M.: Scanning electrochemical microscopy studies for the characterization of localized corrosion reactions at cut edges of coil-coated steel. In: J. Solid State Electrochem. (2014), pp. 1-10
- Izquierdo, J.; Bolat, G.; Mareci, D.; Munteanu, C.; González, S.; Souto, R. M.: Electrochemical behaviour of ZrTi alloys in artificial physiological solution simulating in vitro inflammatory conditions. In: Appl. Surf. Sci. 313 (2014), Issue 0, pp. 259–266
- Izquierdo, J.; González, S.; Souto, R. M.: Application of AC-SECM in Corrosion Science: Local Visualization of Heterogeneous Chemical Activity in AA2024 Surfaces. Int. J. Electrochem. Sci. 7 (2012), Issue 11, pp. 11377–11388
- Izquierdo, J.; Martín-Ruíz, L.; Fernández-Pérez, B. M.; Fernández-Mérida, L.; Santana, J. J.; Souto, R. M.: Imaging Local Surface Reactivity on Stainless Steels 304 and 316 in Acid Chloride Solution using Scanning Electrochemical Microscopy and the Scanning Vibrating Electrode Technique. In: Electrochimica Acta 134 (2014), Issue 0, pp. 167–175
- Izquierdo, J.; Martín-Ruíz, L.; Fernández-Pérez, B. M.; Rodríguez-Raposo, R.; Santana, J. J.; Souto, R. M.: Scanning microelectrochemical characterization of the effect of polarization on the localized corrosion of 304 stainless steel in chloride solution. In:Journal of Electroanalytical Chemistry 728 (2014), Issue 0, pp. 148–157
- Izquierdo, J.; Nagy, L.; Bitter, I.; Souto, R. M.; Nagy, G.: Potentiometric scanning electrochemical microscopy for the local characterization of the electrochemical behaviour of magnesium-based materials. In: Electrochim. Acta 87 (2013), Issue 0, pp. 283–293
- Izquierdo, J.; Santana, J. J.; González, S.; Souto, R. M.: Scanning microelectrochemical characterization of the anti-corrosion performance of inhibitor films formed by 2-mercaptobenzimidazole on copper. In: Prog. Org. Coat. 74 (2012), Issue 3, pp. 526–533
- Izquierdo, J.; Santana, J. J.; González, S.; Souto, R. M.; Santana, J. J.; Souto, R. M.: Uses of scanning electrochemical microscopy for the characterization of thin inhibitor films on reactive metals: The protection of copper surfaces by benzotriazole. In: Electrochim. Acta 55 (2010), Issue 28, pp. 8791–8800
- Jayaraj, J.; Mudali, U. Kamachi: Electrochemical Activity at the Interface of Dissimilar Explosive Joint of Stainless Steel with Zircaloy by Scanning Electrochemical Microscopy. In:J. Adv. Microsc. Res. 7 (2012), Issue 3, pp. 214–217 Leiva-García, Sánchez-Tovar et al. 2014 – Role of Modern Localised Electrochemical
- Leiva-García, Rafael; Sánchez-Tovar, Rita; Escrivà-Cerdán, Clara; García-Antón, José: Role of Modern Localised Electrochemical Techniques to Evaluate the Corrosion on Heterogeneous Surfaces. In: Aliofkhazraei, Mahmood (Hrsg.). Modern Electrochemical Methods in Nano, Surface and Corrosion Science. InTech, 2014. – ISBN 978-953-51-1586-1, Link
- Marques, A. G.; Izquierdo, J.; Souto, R. M.; Simões, A. M.: SECM imaging of the cut edge corrosion of galvanized steel as a function of pH. In: Electrochim. Acta 153 (2015), Issue 0, pp. 238–245
- Martinez-Lombardia, E.; Gonzalez-Garcia, Y.; Lapeire, L.; Graeve, I. de; Verbeken, K.; Kestens, L.; Mol, J. M. C.; Terryn, H.: Scanning electrochemical microscopy to study the effect of crystallographic orientation on the electrochemical activity of pure copper. In:Electrochim. Acta 116 (2014), pp. 89–96
- Oltra, R.; Zimmer, A.; Sorriano, C.; Rechou, F.; Borkowski, C.; Néel, O.: Simulation of pH-controlled dissolution of aluminium based on a modified Scanning Electrochemical Microscope experiment to mimic localized trenching on aluminium alloys. In: Electrochim. Acta 56 (2011), Issue 20, pp. 7038–7044
- Pähler, M.; Schuhmann, W.; Gratzl, M.: Simultaneous Visualization of Surface Topography and Concentration Field by Means of Scanning Electrochemical Microscopy Using a Single Electrochemical Probe and Impedance Spectroscopy. In: ChemPhysChem 12 (2011), Issue 15, pp. 2798–2805
- Pereda, M. D.; Alonso, C.; Burgos-Asperilla, L.; del Valle, J. A.; Ruano, O. A.; Perez, P.; Fernández Lorenzo de Mele, M. A.: Corrosion inhibition of powder metallurgy Mg by fluoride treatments. In: Acta Biomater. 6 (2010), Issue 5, pp. 1772–1782
- Pilbáth, A.; Szabó, T.; Telegdi, J.; Nyikos, L.: SECM study of steel corrosion under scratched microencapsulated epoxy resin. In: Prog. Org. Coat. 75 (2012), Issue 4, pp. 480–485
- Sánchez-Tovar, R.; Montañés, M. T.; García-Antón, J.: Effects of microplasma arc AISI 316L welds on the corrosion behaviour of pipelines in LiBr cooling systems. In: Corros. Sci. 73 (2013), pp. 365–374
- Santana, J. J.; González-Guzmán, J.; Fernandez-Merida, L.; González, S.; Souto, R. M.: Visualization of local degradation processes in coated metals by means of scanning electrochemical microscopy in the redox competition mode. In: Electrochim. Acta 55 (2010), Issue 15, pp. 4488–4494
- Santana, J. J.; Pähler, M.; Souto, R. M.; Schuhmann, W.: Direct evidence of early blister formation in polymer-coated metals from exposure to chloride-containing electrolytes by alternating-current scanning electrochemical microscopy. In: Electrochim. Acta 77 (2012), pp. 60–64
- Souto, R. M.; Fernandez-Merida, L.; González, S.: SECM Imaging of Interfacial Processes in Defective Organic Coatings Applied on Metallic Substrates Using Oxygen as Redox Mediator. In: Electroanalysis 21 (2009), Issue 24, pp. 2640–2646
- Souto, R. M.; González-García, Y.; Izquierdo, J.; González, S.: Examination of organic coatings on metallic substrates by scanning electrochemical microscopy in feedback mode: Revealing the early stages of coating breakdown in corrosive environments. In: Corros. Sci. 52 (2010), Issue 3, pp. 748–753
- Souto, R. M.; Kiss, A.; Izquierdo, J.; Nagy, L.; Bitter, I.; Nagy, G.: Spatially-resolved imaging of concentration distributions on corroding magnesium-based materials exposed to aqueous environments by SECM. In: Electrochem. Commun. 26 (2013), pp. 25–28
- Nanotechnology
- Aïnouche, L.; Hamadou, L.; Kadri, A.; Benbrahim, N.; Bradai, D.: Interfacial Barrier Layer Properties of Three Generations of TiO2 Nanotube Arrays. In: Electrochim. Acta 133 (2014), Issue 0, pp. 597–609
- Etienne, M.; Dierkes, P.; Erichsen, T.; Schuhmann, W.; Fritsch, I.: Constant-Distance Mode Scanning Potentiometry. High Resolution pH Measurements in Three-Dimensions. In:Electroanalysis 19 (2007), Issue 2-3, pp. 318–323
- Guillemin, Y.; Etienne, M.; Sibottier, E.; Walcarius, A.: Microscale Controlled Electrogeneration of Patterned Mesoporous Silica Thin Films. In: Chem. Mater. 23 (2011), Issue 24, pp. 5313–5322
- Joshi, V. S.; Haram, S. K.; Dasgupta, A.; Kumar, G. V. P.: Mapping of Electrocatalytic Sites on a Single Strand of Carbon Fiber Using Scanning Electrochemical Microscopy (SECM). In:J. Phys. Chem. C 116 (2012), Issue 17, pp. 9703–9708
- Molina, J.; Esteves, M. F.; Fernández, J.; Bonastre, J.; Cases, F.: Polyaniline coated conducting fabrics. Chemical and electrochemical characterization. In: Eur. Polym. J. 47 (2011), Issue 10, pp. 2003–2015
- Molina, J.; Fernández, J.; del Río, A. I.; Bonastre, J.; Cases, F.: Chemical, electrical and electrochemical characterization of hybrid organic/inorganic polypyrrole/PW12O403− coating deposited on polyester fabrics. In: Appl. Surf. Sci. 257 (2011), Issue 23, pp. 10056–10064
- Molina, J.; Fernández, J.; del Río, A. I.; Bonastre, J.; Cases, F.: Electrochemical synthesis of polyaniline on conducting fabrics of polyester covered with polypyrrole/PW12O403−. Chemical and electrochemical characterization. In: Synthetic Met. 161 (2011), Issue 11–12, pp. 953–963
- Molina, J.; Fernández, J.; del Río, A. I.; Lapuente, R.; Bonastre, J.; Cases, F.: Stability of conducting polyester/polypyrrole fabrics in different pH solutions. Chemical and electrochemical characterization. In: Polym. Degrad. Stabil. 95 (2010), Issue 12, pp. 2574–2583
- Neugebauer, S.; Müller, U.; Lohmüller, T.; Spatz, J. P.; Stelzle, M.; Schuhmann, W.: Characterization of Nanopore Electrode Structures as Basis for Amplified Electrochemical Assays. In: Electroanalysis 18 (2006), Issue 19-20, pp. 1929–1936
- Electrocatalysis
- Assumpção, M. H. M. T.; Souza, R. F. B. de; Rascio, D. C.; Silva, J. C. M.; Calegaro, M. L.; Gaubeur, I.; Paixão, T. R. L. C.; Hammer, P.; Lanza, M. R. V.; Santos, M. C.: A comparative study of the electrogeneration of hydrogen peroxide using Vulcan and Printex carbon supports. In: Carbon 49 (2011), Issue 8, pp. 2842–2851
- Dantas, L. M. F.; De Souza,A. P. R.; Castro, P. S.; Paixão,T. R. L. C.; Bertotti, M.: SECM Studies on the Electrocatalytic Oxidation of Glycerol at Copper Electrodes in Alkaline Medium. In: Electroanalysis 24 (2012), Issue 8, pp. 1778–1782
- del Río, A. I.; Fernández, J.; Molina, J.; Bonastre, J.; Cases, F.: On the behaviour of doped SnO2 anodes stabilized with platinum in the electrochemical degradation of reactive dyes. In: Electrochim. Acta 55 (2010), Issue 24, pp. 7282–7289
- Dobrzeniecka, A.; Zeradjanin, A.; Masa, J.; Puschhof, A.; Stroka, J.; Kulesza, P. J.; Schuhmann, W.: Application of SECM in tracing of hydrogen peroxide at multicomponent non-noble electrocatalyst films for the oxygen reduction reaction. In: Catal. Today 202 (2013), Issue 0, pp. 55–62
- Kundu, S.; Nagaiah, T. C.; Xia, W.; Wang, Y.; van Dommele, S.; Bitter, J. H.; Santa, M.; Grundmeier, G.; Bron, M.; Schuhmann, W.; Muhler, M.: Electrocatalytic Activity and Stability of Nitrogen-Containing Carbon Nanotubes in the Oxygen Reduction Reaction. In: J. Phys. Chem. C 113 (2009), Issue 32, pp. 14302–14310
- Reis, Rafael M.; Valim, Ricardo B.; Rocha, Robson S.; Lima, Alex S.; Castro, Pollyana S.; Bertotti, Mauro; Lanza, Marcos R.V.: The use of copper and cobalt phthalocyanines as electrocatalysts for the oxygen reduction reaction in acid medium. In: Electrochimica Acta 139 (2014), Issue 0, pp. 1–6